2021 PSLE STANDARD MATHS (ANSWER KEY)

Paper 1

Booklet A (20 marks)
Questions 1 to 10: 1 mark each
Questions 11 to 15: 2 marks each

$\mathbf{1 .}$	2	$\mathbf{6 .}$	4	$\mathbf{1 1 .}$	4
2.	3	7.	2	12.	1
3.	1	8.	3	13.	4
4.	4	9.	4	14.	3
5.	2	10.	1	15.	3

Booklet B

Question 16 to 20 : 1 mark each
Questions 21 to 30: 2 marks each

Question	Answer
16	483
17	1,2 and 4
18	$1 \frac{13}{15}$
19	0.125
20	$128 \pi \mathrm{~cm}^{2}$
21	$\begin{aligned} & \text { Nigel }: \text { Helen } \\ & \frac{2(\mathrm{x} 3)}{5(\mathrm{x} 3)}: \frac{3(\mathrm{x} 2)}{4(\mathrm{x} 2)} \\ & \frac{6}{15} \quad: \frac{6}{8}[\mathrm{M} 1] \\ & 15 \mathrm{u}-8 \mathrm{u}=7 \mathrm{u} \\ & 7 \mathrm{u}=28 \\ & 1 \mathrm{u}=4 \\ & 15 \mathrm{u}=15 \times 4=60 \\ & \text { [A1] } \end{aligned}$
22	Cost of 2 cupboards \rightarrow \$y Cost a cupboard $\rightarrow \$\left(\frac{y}{2}\right)$ [M1]

	$\begin{aligned} \text { Cost a sofa } & \rightarrow \$ 150+\$\left(\frac{y}{2}\right) \\ & =\$\left(150+\frac{y}{2}\right)[\mathrm{A} 1] \end{aligned}$
23	$\begin{aligned} \text { Area of } \begin{aligned} 1 \text { triangle } & \rightarrow \frac{1}{2} \times 16 \mathrm{~cm} \times 8 \mathrm{~cm} \\ & =64 \mathrm{~cm}^{2}[\mathrm{M} 1] \end{aligned} \end{aligned}$ Area of 2 triangles (1 square) $\rightarrow 64 \mathrm{~cm}^{2} \times 2=128 \mathrm{~cm}^{2}$ [A1]
24	
25	Number of operating hours for lunch $\rightarrow 3$ Number of operating hours for dinner $\rightarrow 4$ Number of days (from Monday to Friday) $\rightarrow 5$ [M1] Number of operating hours from Monday to Friday $\rightarrow 7 \mathrm{~h} \times 5$ days $=35 \mathrm{~h}[\mathrm{~A} 1]$
26	$\begin{aligned} \begin{aligned} 1 \mathrm{u} & =30 \mathrm{~kg}-7 \mathrm{~kg}-4 \mathrm{~kg} \\ & =19 \mathrm{~kg} \\ \text { Mass of Claire } & \rightarrow 19 \mathrm{~kg}+7 \mathrm{~kg} \\ & =26 \mathrm{~kg} \end{aligned} \end{aligned}$ Mass of Beatrice $\rightarrow 19 \mathrm{~kg}$ Total mass of the 3 girls $\rightarrow 30 \mathrm{~kg}+26 \mathrm{~kg}+19 \mathrm{~kg}$ $=75 \mathrm{~kg} \text { [M1] }$ Average mass of the 3 girls $\rightarrow 75 \mathrm{~kg} \div 3$ $=25 \mathrm{~kg}[\mathrm{~A} 1]$
27	$\begin{aligned} & \hline \text { Mass of container filled with blue marbles completely } \rightarrow 1.425 \mathrm{~kg} \\ &=1425 \mathrm{~g} \\ & \hline \end{aligned}$

	Mass of container when it is $\frac{4}{7}$ filed with blue marbles $\rightarrow 1.161 \mathrm{~kg}$ $=1161 \mathrm{~g}$ Fraction of blue marbles left to fill the container $\rightarrow 1-\frac{4}{7}$ $=\frac{3}{7}$ Mass of $\frac{3}{7}$ of blue marbles only $\rightarrow 1425 \mathrm{~g}-1161 \mathrm{~g}$ $=264 \mathrm{~g}$ $\begin{aligned} & 3 \mathrm{u}=264 \mathrm{~g} \\ & 1 \mathrm{u}=88 \mathrm{~g} \\ & 7 \mathrm{u}=616 \mathrm{~g}[\mathrm{M} 1] \end{aligned}$ Mass of empty container $\rightarrow 1425 \mathrm{~g}-616 \mathrm{~g}=\mathbf{8 0 9} \mathrm{g}$ [A1]
28	$\begin{aligned} & \begin{array}{l} 4 \mathrm{u}=20 \\ 1 \mathrm{u}=5 \end{array} \\ & \text { Length of } \mathrm{EB} \rightarrow 5 \times 3=15 \mathrm{~cm}[\mathrm{M} 1] \\ & \\ & \begin{aligned} \text { Area of shaded part } & \rightarrow \frac{1}{2} \times 15 \times 20 \\ & =150 \mathrm{~cm}^{2} \end{aligned} \text { [A1] } \end{aligned}$
29	$12-3=9$ Number of walls 1 worker had to build more $\rightarrow 4$ Number of walls 9 workers had to build more $\rightarrow 4 \times 9=36$ Number of walls 1 worker needed to build $\rightarrow 36 \div 3=12$ [M1] Total number of walls needed to be built $\rightarrow 12 \times 12=144$ [A1]
30	$100 \%-10 \%=90 \%$ Amount of money Wendy spent in January $\begin{aligned} & \rightarrow \frac{90}{100} \times \$ 1400 \\ & =\$ 1260[\mathrm{M} 1] \end{aligned}$ Wendy's monthly salary $\rightarrow \$ 1260+650$ $=\$ 1910 \text { [A1] }$

Paper 2

Questions 1 to 5 : 2 marks each

Question	Answer
1	 Total number of units $\rightarrow 6+9+5=20 u$ Difference in number of units between yellow and black buttons $\begin{aligned} & \rightarrow 6 u-5 u=1 u \\ & 1 u=20 \end{aligned}$ Total number of buttons $\rightarrow 20 \times 20=400$ [A1]
2	2 painters -32 walls -8 hours 2 painters - 4 walls - 1 hour $\downarrow \div 2 \quad \downarrow \div 2$ 2 painters -2 walls -30 min [M1] 1 painter - 1 wall - 30 min [A1]
3	Amount for a group of 350 c coins and $1 \$ 1$ coin $\rightarrow \$ 3 \times 50 \Phi+1$ $=\$ 2.50$ Number of groups of $\$ 2.50 \rightarrow \$ 22.50 \div \$ 2.50=9$ [M1] Number of 50 ¢ coins $\rightarrow 9 \times 3=\mathbf{2 7}$ [A1]
4	$\begin{aligned} & 1^{\text {st }} \rightarrow 1 u \\ & 2^{\text {nd }} \rightarrow 1 u+5 \\ & 3^{\text {rd }} \rightarrow 1 u+5+5 \\ & \\ & 3 \times 5=15[\mathrm{M} 1] \\ & 3 \mathrm{u}=135-15 \\ & 3 \mathrm{u}=120 \\ & 1 \mathrm{u}=40[\mathrm{~A} 1] \end{aligned}$
5	

	$\begin{aligned} & 26 u+104=30 u+80 \\ & 4 u=24 \\ & 1 u=6[\text { M1 }] \\ & 6 \times 2 u=12[A 1] \end{aligned}$
6	$\begin{aligned} & \text { Annabelle's mass } \rightarrow 14 \mathrm{y} \mathrm{~kg} \\ & \text { Crystal's mass } \rightarrow 14 \mathrm{y}-4 \mathrm{~kg} \text { [M1] } \\ & \text { Average mass of } 2 \text { children } \rightarrow \begin{aligned} 14 \mathrm{y}+(14 \mathrm{y}-4 \mathrm{~kg}) \\ \text { [M1] } \end{aligned} \\ & \qquad=(14 \mathrm{y}-\mathbf{2}) \mathrm{kg}[\mathrm{~A} 1] \end{aligned}$
7	Percentage he paid $\rightarrow 100 \%-40 \%=60 \%$ Cost of laptop after discount without 7\% GST $\rightarrow \$ 990$ $\begin{aligned} & 60 \% \rightarrow \$ 990 \\ & 1 \% \rightarrow \$ 16.50 \\ & 100 \% \rightarrow \$ 1650 \text { [M1] } \end{aligned}$ Cost of laptop before discount with 7% GST $\rightarrow \$ 1650$ $\text { Amount of } 7 \% \text { GST } \rightarrow 7 \% \times 1 \$ 1650$ $=\$ 115.50[\mathrm{M} 1]$ $\$ 1650+\$ 115.50=\$ 1765.50[\mathrm{~A} 1]$
8	$\begin{aligned} \text { Radius }=15 \mathrm{~cm} \\ \begin{aligned} \text { Circumference of semi-circle } & \rightarrow \frac{1}{2} \times 2 \times 3.14 \times 15 \mathrm{~cm} \\ & =47.1 \mathrm{~cm}[\mathrm{M} 1] \\ \text { Perimeter of the shaded part } & \rightarrow 47.1+15+15+15+15[\text { M1] } \\ & =107.1 \mathrm{~cm}[\text { A1] }] \end{aligned} \end{aligned}$
9	Total marks of 38 students (incorrect) $\rightarrow 74 \times 38=2812$ [M1] Actual marks of 36 students $\rightarrow 2812-75-75=2662$ Correct average marks of 38 students $\rightarrow 75 \times 38=2850$ [M1] Total marks of the students $\rightarrow 2850-2662=188$ Correct score of 1 student $\rightarrow 188 \div 2=94$ [A1]
10	V $: ~ T$ $:$ 12 u $:$ Bu u Van has 4 wheels Number of units representing wheels for 12 u of vans $\rightarrow 4 \times 12 \mathrm{u}=48 \mathrm{u} \text { [M1] }$ Tricycle has 3 wheels Number of units representing wheels for $5 u$ of tricycles $\rightarrow 3 \times 5 u=15 u$ Bicycle has 2 wheels Number of units representing wheels for 9 u of bicycles $\rightarrow 2 \times 9 \mathrm{u}=18 \mathrm{u}[\mathrm{M} 1]$ Total no of units representing wheels $\rightarrow 48 u+15 u+18 u=81 u$

	$1 u \rightarrow 324 \div 81=4$ Number of vans $\rightarrow 4 \times 12 \mathrm{u}=48$ Number of bicycles $\rightarrow 4 \times 9 \mathrm{u}=36$ Total number of vans and bicycles $\rightarrow 48+36=84$ [A1]
11	$\begin{aligned} & \text { Total number of balls at first } \rightarrow 100 \\ & \text { Number of additional volley balls put into the box } \rightarrow 12 \\ & \text { Percentage of soccer balls taken out } \rightarrow 50 \% \\ & \text { Total number of balls in the end } \rightarrow 102 \\ & \text { Number of soccer balls taken out } \rightarrow 100+12-102 \\ & =10[\mathrm{M} 1] \\ & \\ & 50 \% \text { of soccer balls } \rightarrow 10 \\ & 100 \% \text { of soccer balls } \rightarrow 10 \times 2=20 \text { [M1] } \\ & \text { Number of soccer balls at first } \rightarrow 20 \\ & \text { Number of volley balls at first } \rightarrow 100-20=80 \text { [M1] } \\ & \text { Number of volley balls in the end } \rightarrow 80+12=92 \\ & \text { Percentage increase in volley balls } \rightarrow \frac{92-80}{80} \times 100 \% \\ & \qquad=15 \% \text { [A1] } \end{aligned}$
12	Kara's dolls $\rightarrow 5$ u Grace's dolls $\rightarrow 7$ u Percentage Kara's dolls in the end $\rightarrow 100 \%+12 \%=112 \%$ No of units representing Kara' dolls in the end $\rightarrow \frac{112}{100} \times 5 \mathrm{u}=5.6 \mathrm{u}[\mathrm{M} 1]$ Percentage of Grace's dolls in the end $\rightarrow \frac{70}{100} \times 7 \mathrm{u}=4.9 \mathrm{u}[\mathrm{M} 1]$ Difference in the number of units between Kara's and Grace's dolls in the end $\rightarrow 5.6 u-4.9 u=0.7 u$ [M1] $\begin{aligned} & 0.7 \mathrm{u} \rightarrow 280 \\ & 1 \mathrm{u} \rightarrow 400 \end{aligned}$ Number of dolls Kara had in the end $\rightarrow 400 \times 5.6 \mathrm{u}=2240$ [A1]
13	$\begin{aligned} & 1-\frac{2}{5}-\frac{1}{3}=\frac{4}{15} \\ & \frac{1}{2} \times \frac{4}{15}=\frac{2}{15}[\mathrm{M} 1] \\ & 2 \mathrm{u} \rightarrow 240 \mathrm{~cm}^{2} \\ & 1 \mathrm{u} \rightarrow 120 \mathrm{~cm}^{2} \\ & 15 \mathrm{u} \rightarrow 1800 \mathrm{~cm}^{2}[\mathrm{M} 1] \\ & \text { Length }(2 \mathrm{~B}) \times \text { Breadth }(\mathrm{B})=1800 \mathrm{~cm}^{2} \\ & 2 \mathrm{~B}^{2}=1800 \mathrm{~cm}^{2} \\ & \mathrm{~B}=30 \mathrm{~cm}[\mathrm{M} 1] \end{aligned}$

	Perimeter $=60+60+30+30=180 \mathbf{c m}$ [A1]
14	Amount earned from 10 tables (1 group) $\rightarrow \$ 20 \times 10+\$ 30=\$ 230[\mathrm{M} 1]$ Number of 10 tables sold (1 group) $\rightarrow \$ 3490 \div \$ 230=15 \text { groups R \$40 [M1] }$ Number of tables sold in 15 groups $\rightarrow 10 \text { bags } \times 15 \text { groups }=150$ Amount of money left to earn $\$ 40 \rightarrow \$ 40 \div \$ 20=2$ [M1] $150+2=152[A 1]$
15	Breadth of rectangle $=\frac{1}{3} \times 30=10 \mathrm{~cm}$ [M1] Base of triangle $=30-4=26 \mathrm{~cm}$ Area of triangle $=\frac{1}{2} \times 26 \times 10=130 \mathrm{~cm}^{2}$ [M1] Area of semi-circle $=\frac{1}{2} \times 3.14 \times 5 \times 5=39.25 \mathrm{~cm}^{2}$ [M1] Area of shaded part $=130+39.25=169.25 \mathrm{~cm}^{2}$ [A1]
16	 Total no of units $\rightarrow 5+6+9=20$ u [M1] Fraction of red t-shirts $\rightarrow \frac{5}{20}$ Fraction of red t -shirts left $\rightarrow \frac{2}{20}$ Fraction of red t-shirts given away $\rightarrow \frac{5}{20}-\frac{2}{20}=\frac{3}{20}$ [M1] $3 u \rightarrow 12$ $1 u \rightarrow 4$ Total no of t-shirts $\rightarrow 4 \times 20 \mathrm{u}=80$ [M1] Number of t-shirts left $\rightarrow 80-16=68$ t-shirts [A1]
17	A $:$ J 40% $:$ 60% Percentage of Adam's share now $\rightarrow \frac{20}{100} \times 40 \%$ more $\rightarrow 8 \%$ more $\begin{aligned} & \rightarrow 40 \%+8 \% \text { more }=48 \%[\mathrm{M} 1] \\ & 48 \% \rightarrow \$ 57.60 \\ & 1 \% \rightarrow \$ 1.20 \end{aligned}$ Percentage of Joe's share now $\rightarrow \frac{20}{100} \times 60 \%$ more $\rightarrow 12 \%$ more $\rightarrow 60 \%+12 \%$ more $=72 \%$ [M1]

	$72 \% \rightarrow \$ 1.20 \times 72=\$ 86.40$
	Total percentage Adam and Joe had to pay $\rightarrow 48 \%+72 \%=120 \%$
$[$ [M1]	
Total amount of money Adam and Joe had to pay	
$\rightarrow \$ 57.60+\$ 86.40=\$ 144$ [M1]	
	$120 \% \rightarrow \$ 144$
$1 \% \rightarrow \$ 1.20$	
$100 \% \rightarrow \$ 120$ [A1]	

