PSLE Mathematics (Standard)

Answer Key

Paper 1

Booklet A (20 marks)

Questions 1 to 10: 1 mark each
Questions 11 to 15: 2 marks each

$\mathbf{1 .}$	4	$\mathbf{6 .}$	3	$\mathbf{1 1 .}$	4
$\mathbf{2 .}$	3	$\mathbf{7 .}$	2	$\mathbf{1 2 .}$	2
3.	3	$\mathbf{8 .}$	4	$\mathbf{1 3 .}$	3
$\mathbf{4 .}$	4	$\mathbf{9 .}$	1	$\mathbf{1 4 .}$	1
$\mathbf{5 .}$	1	$\mathbf{1 0 .}$	4	$\mathbf{1 5 .}$	3

Booklet B

Question 16 to 20 : 1 mark each
Questions 21 to 30: 2 marks each

Question	Answer
16	373
17	$11 \frac{2}{3}$
18	1, 2, 4, 8
19	0.375
20	$128 \pi \mathrm{~cm}^{2}$
21	55.7 kg
22	
23	Cost of 2 stuffed toys $\rightarrow \$ z$ Cost a stuffed toy $\rightarrow \$\left(\frac{Z}{2}\right)[$ M1]

	$\begin{aligned} \text { Cost a robot } & \rightarrow \$ 50+\$\left(\frac{Z}{2}\right) \\ & =\$\left(50+\frac{z}{2}\right)[\mathrm{A} 1] \end{aligned}$
24	$\begin{aligned} & 20 \times 2=40[\mathrm{M} 1] \\ & 40 \div 10=4[\mathrm{~A} 1] \\ & \hline \end{aligned}$
25	$\begin{aligned} \text { Area of } \begin{aligned} 1 \text { triangle } & \rightarrow \frac{1}{2} \times 18 \mathrm{~cm} \times 9 \mathrm{~cm} \\ & =81 \mathrm{~cm}^{2}[\mathrm{M} 1] \end{aligned} \end{aligned}$ Area of 2 triangles (1 square) $\rightarrow 81 \mathrm{~cm}^{2} \times 2=162 \mathbf{c m}^{2}$ [A1]
26	$\begin{aligned} 1 \mathrm{u} & =30 \mathrm{~kg}-8 \mathrm{~kg}-2 \mathrm{~kg} \\ & =20 \mathrm{~kg} \end{aligned}$ Mass of Amanda $\rightarrow 20 \mathrm{~kg}+8 \mathrm{~kg}$ $=28 \mathrm{~kg}$ Mass of Betty $\rightarrow 20 \mathrm{~kg}$ Total mass of the 3 girls $\rightarrow 30 \mathrm{~kg}+28 \mathrm{~kg}+20 \mathrm{~kg}$ $\text { = } 78 \text { kg [M1] }$ Average mass of the 3 girls $\rightarrow 78 \mathrm{~kg} \div 3$ $=26 \mathrm{~kg}[\mathrm{~A} 1]$
27	$100 \%-15 \%=85 \%$ Amount of money Farah spent in February $\begin{aligned} & \rightarrow \frac{85}{100} \times \$ 1600 \\ & =\$ 1360[\mathrm{M} 1] \end{aligned}$ Wendy's monthly salary $\rightarrow \$ 1360+740$ $=\$ 2100 \text { [A1] }$
28	$\begin{aligned} & 5 u=20 \\ & 1 u=4 \end{aligned}$ Length of $E B \rightarrow 5 \times 3=15 \mathrm{~cm}$ [M1] $\begin{aligned} \text { Area of shaded part } & \rightarrow \frac{1}{2} \times 15 \times 20 \\ & =\mathbf{1 5 0} \mathbf{c m}^{2}[\mathbf{A 1}] \end{aligned}$
29	Mass of box filled with blue cubes completely $\rightarrow 1.625 \mathrm{~kg}$ $=1625 \mathrm{~g}$ Mass of box when it is $\frac{4}{7}$ filed with blue cubes $\rightarrow 1.361 \mathrm{~kg}$

	$=1361 \mathrm{~g}$ Fraction of blue cubes left to fill the box $\rightarrow 1-\frac{4}{7}$ $=\frac{3}{7}$ Mass of $\frac{3}{7}$ of blue cubes only $\rightarrow 1625 \mathrm{~g}-1361 \mathrm{~g}$ $=264 \mathrm{~g}$ $\begin{aligned} & 3 \mathrm{u}=264 \mathrm{~g} \\ & 1 \mathrm{u}=88 \mathrm{~g} \\ & 7 \mathrm{u}=616 \mathrm{~g}[\mathrm{M} 1] \end{aligned}$ Mass of empty cubes $\rightarrow 1425 \mathrm{~g}-616 \mathrm{~g}=\mathbf{8 0 9} \mathrm{g}$ [A1]
30	$12-3=9$ Number of walls 1 worker had to paint more $\rightarrow 4$ Number of walls 9 workers had to paint more $\rightarrow 4 \times 9=36$ Number of walls 1 worker needed to paint $\rightarrow 36 \div 3=12$ [M1] Total number of walls needed to be paint $\rightarrow 12 \times 12=144$ [A1]

Paper 2

Questions 1 to 5 : 2 marks each

Question	Answer
1	$\begin{aligned} & 90 \times 90=8100[\mathrm{M} 1] \\ & 8100 \times 300 \times \frac{1}{3}=810000 \\ & \quad=0.81 \mathrm{~m}^{3}[\mathbf{A} 1] \end{aligned}$
2	 Total number of units $\rightarrow 6+9+5=20 u$ Difference in number of units between red and white buttons $\begin{aligned} & \rightarrow 6 \mathrm{u}-5 \mathrm{u}=1 \mathrm{u} \\ & 1 \mathrm{u}=25 \end{aligned}$ Total number of buttons $\rightarrow 25 \times 25=625$ [A1]

\begin{tabular}{|c|c|}

\hline 3 \& \begin{tabular}{l}
a) Amy is seated west of Ben.

b)

Cherry

Don

Amy

Ben \square
\end{tabular}

\hline 4 \&

\hline 5 \& $$
\begin{aligned}
& 1^{\text {st }} \rightarrow 1 u \\
& 2^{\text {nd }} \rightarrow 1 u+5 \\
& 3^{\text {rd }} \rightarrow 1 u+5+5 \\
& \\
& 3 \times 5=15[\mathrm{M} 1] \\
& 3 \mathrm{u}=165-15 \\
& 3 \mathrm{u}=150 \\
& 1 \mathrm{u}=50[\mathrm{~A} 1]
\end{aligned}
$$

\hline 6 \& | $\begin{aligned} & \text { Percentage she paid } \rightarrow 100 \%-30 \%=70 \% \\ & \text { Cost of vacuum cleaner after discount without } 8 \% \text { GST } \rightarrow \$ 1050 \\ & 70 \% \rightarrow \$ 1050 \\ & 1 \% \rightarrow \$ 17 \\ & 100 \% \rightarrow \$ 1700[\text { [M1] } \end{aligned}$ |
| :--- |
| Cost of laptop before discount with 8% GST $\rightarrow \$ 1700$ $\text { Amount of } 8 \% \text { GST } \rightarrow 8 \% \times \$ 1700$ $\text { = \$ } 136 \text { [M1] }$ $\$ 1700+\$ 136=\$ 1836[\mathbf{A 1}]$ |

\hline
\end{tabular}

7	$\begin{aligned} & \text { Ahmad's mass } \rightarrow 18 \mathrm{ykg} \\ & \text { Bala's mass } \rightarrow 18 \mathrm{y}-6 \mathrm{~kg} \text { [M1] } \\ & \text { Average mass of } 2 \text { children } \rightarrow \frac{18 \mathrm{y}+(18 \mathrm{y}-6 \mathrm{~kg}) \text { [M1] }}{} \begin{array}{r} 2 \\ =(18 \mathrm{y}-3) \mathrm{kg}[\mathrm{A1]}] \end{array} \end{aligned}$
8	$\begin{aligned} & \text { Radius }=25 \mathrm{~cm} \\ & \text { Circumference of semi-circle } \rightarrow \frac{1}{2} \times 2 \times 3.14 \times 25 \mathrm{~cm} \\ &=78.5 \mathrm{~cm}[\mathrm{M} 1] \\ & \text { Perimeter of the shaded part } \rightarrow 78.5+25+25+25+25[\mathrm{M} 1] \\ &=178.5 \mathrm{~cm} \text { [A1] } \end{aligned}$
9	B $:$ T $:$ 12 u $:$ E u $:$ 9 u Bus has 4 wheels Number of units representing wheels for 12 u of buses $\rightarrow 4 \times 12 \mathrm{u}=48 \mathrm{u}[\mathrm{M} 1]$ Tricycle has 3 wheels Number of units representing wheels for 5 u of tricycles $\rightarrow 3 \times 5 u=15 u$ E-scooters has 2 wheels Number of units representing wheels for 9 u of e-scooters $\rightarrow 2 \times 9 \mathrm{u}=18 \mathrm{u}[\mathrm{M} 1]$ Total no of units representing wheels $\rightarrow 48 u+15 u+18 u=81 u$ $1 u \rightarrow 405 \div 81=5$ Number of vans $\rightarrow 5 \times 12 u=60$ Number of bicycles $\rightarrow 6 \times 9 u=45$ Total number of vans and bicycles $\rightarrow 60+45=105$ [A1]
10	a) $\angle A D C=180^{\circ}-63=117^{\circ}$ [A1] b) [A2]
11	Danny's toy cars $\rightarrow 5$ u Eugene's toy cars $\rightarrow 7 \mathrm{u}$ Percentage Danny's toy cars in the end $\rightarrow 100 \%+14 \%=114 \%$ No of units representing Danny's toy cars in the end $\rightarrow \frac{114}{100} \times 5 \mathrm{u}=5.7 \mathrm{u}[\mathrm{M} 1]$

	Percentage of Eugene's toy cars in the end $\rightarrow \frac{70}{100} \times 7 \mathrm{u}=4.9 \mathrm{u}[\mathrm{M} 1]$ Difference in the number of units between Danny's and Eugene's toy cars in the end $\rightarrow 5.7 \mathrm{u}-4.9 \mathrm{u}=0.8 \mathrm{u}$ [M1] $\begin{aligned} & 0.8 u \rightarrow 280 \\ & 1 \mathrm{u} \rightarrow 350 \end{aligned}$ Number of toy cars Danny had in the end $\rightarrow 350 \times 5.7 \mathrm{u}=1995$ [A1]
12	$\begin{aligned} & \text { Total number of balls at first } \rightarrow 100 \\ & \text { Number of additional tennis balls put into the box } \rightarrow 12 \\ & \text { Percentage of baseballs taken out } \rightarrow 50 \% \\ & \text { Total number of balls in the end } \rightarrow 102 \\ & \text { Number of baseballs taken out } \rightarrow 100+12-102 \\ & =10 \text { [M1] } \\ & 50 \% \text { of baseballs } \rightarrow 10 \\ & 100 \% \text { of baseballs } \rightarrow 10 \times 2=20 \text { [M1] } \\ & \text { Number of baseballs at first } \rightarrow 20 \\ & \text { Number of tennis balls at first } \rightarrow 100-20=80 \text { [M1] } \\ & \text { Number of tennis balls in the end } \rightarrow 80+12=92 \\ & \text { Percentage increase in tennis balls } \rightarrow \frac{92-80}{80} \times 100 \% \\ & \\ & \qquad=15 \% \text { [A1] } \end{aligned}$
13	Breadth of rectangle $=\frac{1}{3} \times 60=20 \mathrm{~cm}$ [M1] Base of triangle $=60-10=50 \mathrm{~cm}$ Area of triangle $=\frac{1}{2} \times 50 \times 20=500 \mathrm{~cm}^{2}$ [M1] Area of semi-circle $=\frac{1}{2} \times 3.14 \times 10 \times 10=157 \mathrm{~cm}^{2}$ [M1] Area of shaded part $=500+157=657 \mathrm{~cm}^{2}[$ A1]
14	$\begin{aligned} & 1-\frac{2}{5}-\frac{1}{3}=\frac{4}{15} \\ & \frac{1}{2} \times \frac{4}{15}=\frac{2}{15}[\mathrm{M} 1] \\ & 2 \mathrm{u} \rightarrow 240 \mathrm{~cm}^{2} \\ & 1 \mathrm{u} \rightarrow 120 \mathrm{~cm}^{2} \\ & 15 \mathrm{u} \rightarrow 1800 \mathrm{~cm}^{2}[\mathrm{M} 1] \\ & \text { Length }(2 \mathrm{~B}) \times \text { Breadth }(\mathrm{B})=1800 \mathrm{~cm}^{2} \\ & 2 \mathrm{~B}^{2}=1800 \mathrm{~cm}^{2} \\ & \mathrm{~B}=30 \mathrm{~cm}[\mathrm{M} 1] \\ & \text { Perimeter }=60+60+30+30=180 \mathrm{~cm}[\mathrm{~A} 1] \end{aligned}$

15	a) $\frac{1}{2} \times 4 \times 6=12 \mathrm{~cm}^{2}$ [A1] b) [A3]
16	B $:$ C 40% $:$ 60% Percentage of Billy's share now $\rightarrow \frac{20}{100} \times 40 \%$ more $\rightarrow 8 \%$ more $\begin{aligned} & \rightarrow 40 \%+8 \% \text { more }=48 \%[\mathrm{M} 1] \\ & 48 \% \rightarrow \$ 62.40 \\ & 1 \% \rightarrow \$ 1.30 \end{aligned}$ Percentage of Charlie's share now $\rightarrow \frac{20}{100} \times 60 \%$ more $\rightarrow 12 \%$ more $\begin{aligned} & \rightarrow 60 \%+12 \% \text { more }=72 \%[\text { M1] } \\ & 72 \% \rightarrow \$ 1.30 \times 72=\$ 93.60 \end{aligned}$ Total percentage Billy and Charlie had to pay $\rightarrow 48 \%+72 \%=120 \%$ Total amount of money Billy and Charlie had to pay $\begin{aligned} & \rightarrow \$ 62.40+\$ 93.60=\$ 156[\text { [M1] } \\ & 120 \% \rightarrow \$ 156 \\ & 1 \% \rightarrow \$ 1.30 \\ & 100 \% \rightarrow \$ 130[A 1] \end{aligned}$
17	(a) LCM of $(12,15)=2 \times 2 \times 3 \times 5=60$ [M1] No of packs of cakes $=\frac{60}{15} \times 6=24$ [M1A1] (b) No of packs Violet bought $=\frac{84}{112} \times 4=\$ 28$ [M1] No of cupcakes $=28 \times 8=224$ $224-20=204$

$204-88=116$	
$116-20=96[$ M1 $]$	
	No of packs Daisy bought $=\frac{96}{8}=12[$ A1] $]$

